An alternative Biot's formulation for dissipative porous media with skeleton deformation.
نویسندگان
چکیده
This paper presents an alternative formulation of Biot's theory to account for the elastic frame effects in a porous medium in which the acoustical properties of the fluid phase are predicted with an equivalent fluid model. This approach was originally developed for a double porosity medium. In this paper, the alternative formulation is applied to predict the transmission loss and absorption coefficient in the case of a single layer fibrous material, a multi-layer system, vibrating perforated plates, and porous composite materials. In the proposed formulation the coupling coefficients in Biot's poroelasticity equations are expressed in terms of the dynamic volumic mass and dynamic bulk modulus. By doing so, the elastic properties of the material frame are considered independently from the properties of the fluid. This formulation is implemented in the form of a transfer matrix algorithm which is validated against experimental data on sound absorption and sound transmission which are obtained for a range of various sound excitations and material arrangements. It is shown that this approach is able to predict accurately the acoustical properties of vibrating perforated plates and porous composites. The proposed approach is sufficiently general to be implemented in a finite element method.
منابع مشابه
Multiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis
In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...
متن کاملAxi-Symmetric Deformation Due to Various Sources in Saturated Porous Media with Incompressible Fluid
The general solution of equations of saturated porous media with incompressible fluid for two dimensional axi-symmetric problem is obtained in the transformed domain. The Laplace and Hankel transforms have been used to investigate the problem. As an application of the approach concentrated source and source over circular region have been taken to show the utility of the approach. The transforme...
متن کاملWeighted weak formulation for a nonlinear degenerate parabolic equation arising in chemotaxis or porous media
This paper is devoted to the mathematical analysis of a degenerate nonlinear parabolic equation. This kind of equations stems either from the modeling of a compressible two phase flow in porous media or from the modeling of a chemotaxis-fluid process. In the degenerate equation, the strong nonlinearities are technically difficult to be controlled by the degenerate dissipative term because the e...
متن کاملBody waves in poroelastic media saturated by two immiscible fluids
A study of body waves in elastic porous media saturated by two immiscible Newtonianfluids is presented. We analytically show the existence of three compressionalwaves and one rotationalwave in an infinite porous medium. The first and second compressional waves are analogousto the fast and slow compressionalwaves in Biot's theory. The third compressionalwave is associated with the pressure diffe...
متن کاملA displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
In the present work, the propagation of sound in a lined duct containing sheared mean flow is studied. Walls of the duct are acoustically treated with absorbent poroelastic foams. The propagation of elasto-acoustic waves in the liner is described by Biot's model. In the fluid domain, the propagation of sound in a sheared mean flow is governed by the Galbrun's equation. The problem is solved usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 134 6 شماره
صفحات -
تاریخ انتشار 2013